A Composite Estimator of Effective Teaching
نویسندگان
چکیده
States and districts are collecting multiple measures of teaching to evaluate teacher effectiveness, but there is limited information about how indicators can be combined to improve inferences about a teacher’s impact on student achievement and about teaching. We derive a statistical model and estimate the parameters of an optimal combined measure of teacher effectiveness using data from the Measures of Effective Teaching (MET) project. We contrast the optimal composites to composites created using equal weighting of indicators and to weights based on existing state policies. Our explorations consider multiple scenarios for data collection to determine tradeoffs between collecting more data and combining multiple indicators to improve the accuracy of inferences. We find evidence that there is a common component of effective teaching shared by all indicators, but there are also substantial differences in the stable component across measurement modes and across some indicators within a mode. The implication from our model is that composites that place relatively equal weight on all indicators will tend to capture the component of effective teaching that is common across indicators. We also find that optimal weights strongly depend on the target criterion and the optimal predictor tends to put most of the weight on the indicator corresponding to the target criterion. Composites formed based on state policies are moderately to highly correlated with optimal predictor of teacher contributions to achievement on the state test. Due to the relatively high reliability of the indicators in the MET project dataset, there are small differences in composites created under different data collection scenarios. Note: This paper details the technical methods and analyses for the MET project’s study of composite measures of teaching. A non-technical summary is in the MET project brief, “Ensuring Fair and Reliable Measures of Effective Teaching,” available at www.metproject.org.
منابع مشابه
Comparison of Small Area Estimation Methods for Estimating Unemployment Rate
Extended Abstract. In recent years, needs for small area estimations have been greatly increased for large surveys particularly household surveys in Sta­ tistical Centre of Iran (SCI), because of the costs and respondent burden. The lack of suitable auxiliary variables between two decennial housing and popula­ tion census is a challenge for SCI in using these methods. In general, the...
متن کاملComposite Likelihood Methods Based on Minimum Density Power Divergence Estimator
In this paper a robust version of the Wald test statistic for composite likelihood is 11 considered by using the composite minimum density power divergence estimator instead of the 12 composite maximum likelihood estimator. This new family of test statistics will be called Wald-type 13 test statistics. The problem of testing a simple and a composite null hypothesis is considered and 14 the robu...
متن کاملApplication & Evaluation of Composite Estimator on Forest Inventory Data with ACAS Software Development
Techniques in estimating large-scale forest inventories often require some assessment of misclassification errors between different measurement systems. The Composite Estimator, a statistical technique based on the Kalman Filter and developed by Dr. Ray Czaplewski, provides a means of estimating misclassifiation errors and bias. From 1994 through 1997 the ACAS software package was developed at ...
متن کاملEstimating effective population size or mutation rate with microsatellites.
Microsatellites are short tandem repeats that are widely dispersed among eukaryotic genomes. Many of them are highly polymorphic; they have been used widely in genetic studies. Statistical properties of all measures of genetic variation at microsatellites critically depend upon the composite parameter theta = 4Nmicro, where N is the effective population size and micro is mutation rate per locus...
متن کاملOn Presentation a new Estimator for Estimating of Population Mean in the Presence of Measurement error and non-Response
Introduction According to the classic sampling theory, errors that are mainly considered in the estimations are sampling errors. However, most non-sampling errors are more effective than sampling errors in properties of estimators. This has been confirmed by researchers over the past two decades, especially in relation to non-response errors that are one of the most fundamental non-immolation...
متن کامل